Bài tập tìm nghiệm nguyên của phương trình lượng giác

Chia sẻ: Minh Minh | Ngày: | 1 tài liệu

0
190
lượt xem
4
download
  Download Vui lòng tải xuống để xem file gốc
Bài tập tìm nghiệm nguyên của phương trình lượng giác

Bài tập tìm nghiệm nguyên của phương trình lượng giác
Mô tả bộ sưu tập

Bạn đã chuẩn bị tốt cho kỳ thi sắp tới chưa? Hãy ôn tập với bộ sưu tập Bài tập tìm nghiệm nguyên của phương trình lượng giác mà eLib.vn giới thiệu để việc ôn tập hiệu quả. Đây cũng là cách bạn ghi nhớ kiến thức tốt hơn. Chúc bạn thành công!

LIKE NẾU BẠN THÍCH BỘ SƯU TẬP
Bài tập tìm nghiệm nguyên của phương trình lượng giác

Bài tập tìm nghiệm nguyên của phương trình lượng giác
Tóm tắt nội dung

Đây là một đoạn trích hay trong BST Bài tập tìm nghiệm nguyên của phương trình lượng giác. Mời quý thầy cô tham khảo:

Thí dụ 1: Tìm nghiệm nguyên của phương trình :
y3 - x3 = 91 (1)
Lời giải : (1) tương đương với (y - x)(x2 + xy + y2) = 91 (*)
Vì x2 + xy + y2 > 0 với mọi x, y nên từ (*) => y - x > 0.
Mặt khác, 91 = 1 x 91 = 7 x 13 và y - x ; x2 + xy + y2 đều nguyên dương nên ta có bốn khả năng sau :
y - x = 91 và x2 + xy + y2 = 1 ; (I)
y - x = 1 và x2 + xy + y2 = 91 ; (II)
y - x = 3 và x2 + xy + y2 = 7 ; (III)
y - x = 7 và x2 + xy + y2 = 13 ; (IV)

Thí dụ 2: Tìm nghiệm nguyên dương của phương trình :
x + y + z = xyz (2).
Lời giải :
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

Thí dụ 3: Tìm nghiệm nguyên dương của phương trình :
1/x + 1/y + 1/z = 2 (3)
Lời giải : Do vai trò bình đẳng của x, y, z, trước hết ta xét x ≤ y ≤ z. Ta có :
2 = 1/x + 1/y + 1/z ≤ 3.1/x => x ≤ 3/2 => x = 1.
Thay x = 1 vào (3) ta có :
1/y + 1/z + 1 = 2 => 1 = 1/y + 1/z ≤ 2/y => y ≤ 2
=> y = 1 => 1/z = 0 (vô lí)
hoặc y = 2 => 1/z = 2 => z = 2.
Vậy nghiệm nguyên dương của phương trình (3) là các hoán vị của (1 ; 2 ; 2).

Thí dụ 4: Tìm nghiệm nguyên của phương trình :
x2 - 2y2 = 5 (4)
Lời giải : Từ phương trình (4) ta => x phải là số lẻ. Thay x = 2k + 1 (k thuộc Z) vào (4), ta được :
4k2 +4k + 1 - 2y2 = 5
tương đương 2(k2 + k - 1) = y2
=> y2 là số chẵn => y là số chẵn.
Đặt y = 2t (t thuộc Z), ta có :
2(k2 + k - 1) = 4t2
tương đương k(k + 1) = 2t2 + 1 (**)
Nhận xét : k(k + 1) là số chẵn, 2t2 + 1 là số lẻ => phương trình (**) vô nghiệm.
Vậy phương trình (4) không có nghiệm nguyên.

Thí dụ 5: Chứng minh rằng không tồn tại các số nguyên x, y, z thỏa mãn :
x3 + y3 + z3 = x + y + z + 2000 (5)
Lời giải : Ta có x3 - x = (x - 1).x.(x + 1) là tích của 3 số nguyên liên tiếp (với x là số nguyên). Do đó : x3 - x chia hết cho 3.
Tương tự y3 - y và z3 - z cũng chia hết cho 3. Từ đó ta có : x3 + y3 + z3 - x - y - z chia hết cho 3.
Vì 2000 không chia hết cho 3 nên x3 + y3 + z3 - x - y - z ≠ 2000 với mọi số nguyên x, y, z tức là phương trình (5) không có nghiệm nguyên.

Thí dụ 6: Tìm nghiệm nguyên của phương trình :
xy + x - 2y = 3 (6)
Lời giải : Ta có (6) tương đương y(x - 2) = - x + 3. Vì x = 2 không thỏa mãn phương trình nên (6) tương đương với:
y = (-x + 3)/(x - 2) tương đương y = -1 + 1/(x - 2).
Ta thấy : y là số nguyên tương đương với x - 2 là ước của 1 hay x - 2 = 1 hoặc x - 2 = -1 tương đương với x = 1 hoặc x = 3. Từ đó ta có nghiệm (x ; y) là (1 ; -2) và (3 ; 0).
Chú ý : Có thể dùng phương pháp 1 để giải bài toán này, nhờ đưa phương trình (6) về dạng : x(y + 1) - 2(y + 1) = 1 tương đương (x - 2)(y + 1) = 1.

Thí dụ 7: Tìm nghiệm nguyên của phương trình :
x2 - xy + y2 = 3 (7)
Lời giải :
(7) tương đương với (x - y/2)2 = 3 - 3y2/4
Vì (x - y/2)2 ≥ 0 => 3 - 4y2/4 ≥ 0
=> -2 ≤ y ≤ 2 .
Lần lượt thay y = -2 ; 2 ; -1 ; 1 ; 0 vào phương trình để tính x. Ta có các nghiệm nguyên của phương trình là :
(x ; y) thuộc {(-1 ; -2) ; (1 ; 2) ; (-2 ; -1) ; (2 ; 1) ; (-1 ; 1) ; (1 ; -1)}.

Chắc chắn còn nhiều phương pháp để giải phương trình nghiệm nguyên và còn nhiều thí dụ hấp dẫn khác. Mong các bạn tiếp tục trao đổi về vấn đề này. Các bạn cũng thử giải một số phương trình nghiệm nguyên sau đây :
Bài 1 : Giải các phương trình nghiệm nguyên :
a) x2 - 4 xy = 23 ;
b) 3x - 3y + 2 = 0 ;
c) 19x2 + 28y2 =729 ;
d) 3x2 + 10xy + 8y2 = 96.
Bài 2 : Tìm x, y nguyên dương thỏa mãn :
a) 4xy - 3(x + y) = 59 ;
b) 5(xy + yz + zx) = 4xyz ;
c) xy/z + yz/x + zx/y = 3 ;
d) 1/x + 1/y + 1/z = 1/1995. 

Hi vọng, bộ Bài tập tìm nghiệm nguyên của phương trình lượng giác này hữu ích cho kì ôn tập của các bạn. Chúc các bạn thành công!
Đồng bộ tài khoản