Các phương pháp giải phương trình nghiệm nguyên

Chia sẻ: Trần Thị Kim Lắm | Ngày: | 1 tài liệu

0
72
lượt xem
7
download
  Download Vui lòng tải xuống để xem file gốc
Các phương pháp giải phương trình nghiệm nguyên

Các phương pháp giải phương trình nghiệm nguyên
Mô tả bộ sưu tập

Các tài liệu hay, chất lượng được chọn lọc và biên soạn kỹ lưỡng trong bộ sưu tập Các phương pháp giải phương trình nghiệm nguyên dưới đây sẽ giúp quý thầy cô giáo và các em học sinh có thêm tài liệu tham khảo phục vụ cho công tác giảng dạy và học tập môn Toán.

LIKE NẾU BẠN THÍCH BỘ SƯU TẬP
Các phương pháp giải phương trình nghiệm nguyên

Các phương pháp giải phương trình nghiệm nguyên
Tóm tắt nội dung

Đây là một đoạn trích hay trong BST Các phương pháp giải phương trình nghiệm nguyên. Mời quý thầy cô tham khảo:

Phương pháp 1 : Đưa về dạng tích
Biến đổi phương trình về dạng : vế trái là tích của các đa thức chứa ẩn, vế phải là tích của các số nguyên.
Thí dụ 1 : Tìm nghiệm nguyên của phương trình :
y3 - x3 = 91 (1)
Lời giải : (1) tương đương với (y - x)(x2 + xy + y2) = 91 (*)
Vì x2 + xy + y2 > 0 với mọi x, y nên từ (*) => y - x > 0.
Mặt khác, 91 = 1 x 91 = 7 x 13 và y - x ; x2 + xy + y2 đều nguyên dương nên ta có bốn khả năng sau :
y - x = 91 và x2 + xy + y2 = 1 ; (I)
y - x = 1 và x2 + xy + y2 = 91 ; (II)
y - x = 3 và x2 + xy + y2 = 7 ; (III)
y - x = 7 và x2 + xy + y2 = 13 ; (IV)
Đến đây, bài toán coi như được giải quyết.
Phương pháp 2 : Sắp thứ tự các ẩn
Nếu các ẩn x, y, z, ... có vai trò bình đẳng, ta có thể giả sử x ≤ y ≤ z ≤ ... để tìm các nghiệm thỏa mãn điều kiện này. Từ đó, dùng phép hoán vị để => các nghiệm của phương trình đã cho.
Thí dụ 2 : Tìm nghiệm nguyên dương của phương trình :
x + y + z = xyz (2).
Lời giải :
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).
 

Để xem đầy đủ tài liệu này, quý thầy cô và các em học sinh vui lòng download bộ sưu tập Các phương pháp giải phương trình nghiệm nguyên và xem thêm các tài liệu khác. Chúc quý thầy cô giáo giảng dạy hay, các em học tập tốt.
Đồng bộ tài khoản