Chuyên đề bài tập đạo hàm

Chia sẻ: Trần Phương Mai Ly | Ngày: | 6 tài liệu

0
628
lượt xem
35
download
Xem 6 tài liệu khác
  Download Vui lòng tải xuống để xem file gốc
Chuyên đề bài tập đạo hàm

Chuyên đề bài tập đạo hàm
Mô tả bộ sưu tập

Mong muốn chia sẻ đến các bạn học sinh phổ thông nhiều tài liệu luyện thi đại học hơn, chúng tôi đã tổng hợp tất cả kiến thức về Chuyên đề bài tập đạo hàm trong bộ sưu tập này. BST được sắp xếp rõ ràng, giúp các bạn học sinh dễ dàng hệ thống lại kiến thức, ôn tập một cách hiệu quả hơn. Hy vọng, BST này sẽ hữu ích đối với các bạn.

LIKE NẾU BẠN THÍCH BỘ SƯU TẬP
Chuyên đề bài tập đạo hàm

Chuyên đề bài tập đạo hàm
Tóm tắt nội dung

Đây là một đoạn trích hay trong BST Chuyên đề bài tập đạo hàm. Mời quý thầy cô tham khảo:
 

I. DÙNG ĐỊNH NGHĨA TÍNH ĐẠO HÀM CỦA CÁC HÀM SỐ SAU TẠI X0:
1. x0 = -1 (-7) 2. x0 R (-2sin2x)
3. x0 = 1 ( ) 4. x0 = 0 (-2009!)
5. x0 = 1 (4) 6. x0 = 0. (1)
III. DÙNG CÔNG THỨC TÍNH ĐẠO HÀM CÁC HÀM SỐ SAU:
IV. Cho hai hàm số: . CMR: f’(x) = g’(x). Giải thích.
V. Cho hàm số: . Giải bất phương trình: .
VI. Chứng minh hàm số sau đây có đạo hàm không phụ thuộc vào x:
VII. Tính biết .

VIII. Cho hàm số:
1) Tìm m để: a) b) có hai nghiệm phân biệt cùng dấu.
2) Chứng minh rằng trong trường hợp có hai nghiệm phân biệt thì các nghiệm này thoả mãn hệ thức độc lập với m.
IX. CHỨNG MINH RẰNG:
1. Nếu thì: (1 - x2)y’’ - xy' + y = 0
2. Nếu thì:
X. TÌM ĐẠO HÀM CẤP n CỦA CÁC HÀM SỐ SAU:
XI. DÙNG ĐỊNH NGHĨA ĐẠO HÀM ĐỂ TÍNH CÁC GIỚI HẠN SAU:
XII. TIẾP TUYẾN:
1. Cho hàm số: (C)
Viết phương trình tiếp tuyến với (C) biết:
a) Hoành độ tiếp điểm bằng -1 (y = 12x+7)
b) Tiếp tuyến có hệ số góc k = 12 (y = 12x+7, y = 12x - 20)
c) Tiếp tuyến đi qua điểm (y = 0, y = ).
2. Cho hàm số: (C)
Viết phương trình tiếp tuyến với (C) biết:
a) Tung độ của tiếp điểm bằng ( )
b) Tiếp tuyến song song với đường thẳng ( )
c) Tiếp tuyến vuông góc với đường thẳng ,
d) Tiếp tuyến đi qua điểm A(2; 0) ( )
e) Tiếp tuyến tạo với trục hoành góc 450 ( ).
3. Cho hàm số: (C)
Chứng minh rằng qua điểm M(-2; 0) kẻ được 2 tiếp tuyến tới (C), đồng thời 2 tiếp tuyến đó vuông góc với nhau.
4. Cho hàm số: (C)
a) Chứng minh rằng qua A(1; 1) không kẻ được tiếp tuyến nào tới (C).
b) Tìm trên Oy các điểm từ đó kẻ được ít nhất 1 tiếp tuyến đến (C) A(0; m), m .
5. Cho hàm số: (C)
d) Chứng minh rằng: Trong tất cả các tiếp tuyến của (C), tiếp tuyến tại điểm U(1; 0) có hệ số góc nhỏ nhất.
e) Tìm trên đường thẳng y = 2 những điểm từ đó kẻ được 3 tiếp tuyến tới (C)
(A(a; 2), a < -1; a > 5/3; a 2)
f) Tìm trên đường thẳng y = 2 những điểm từ đó kẻ được 3 tiếp tuyến tới (C), sao cho có 2 tiếp tuyến vuông góc với nhau. (A ).
6. Cho hàm số: . Viết phương trình tiếp tuyến đi qua gốc tọa độ.
7. Cho hàm số: . Tiếp tuyến bất kì tại cắt 2 đường thẳng và tại . Chứng minh rằng là trung điểm .

Để xem đầy đủ tài liệu này, quý thầy cô và các em học sinh vui lòng click vào bộ sưu tập Chuyên đề bài tập đạo hàm và xem thêm các tài liệu khác. Chúc quý thầy cô giáo giảng dạy hay, các em học tập tốt.
 

Đồng bộ tài khoản