Chuyên đề phương trình đường thẳng lớp 10 cơ bản

Chia sẻ: Nguyễn Thị Lan Phương | Ngày: | 10 tài liệu

0
1.302
lượt xem
85
download
Xem 10 tài liệu khác
  Download Vui lòng tải xuống để xem file gốc
Chuyên đề phương trình đường thẳng lớp 10 cơ bản

Chuyên đề phương trình đường thẳng lớp 10 cơ bản
Mô tả bộ sưu tập

BST Chuyên đề phương trình đường thẳng lớp 10 cơ bản tổng hợp lý thuyết và các bài tập tham khảo giúp các em học sinh tự luyện tập và có kĩ năng vận dụng khi gặp các bài tập tương tự hoặc có liên quan. Hy vọng, BST này là tài liệu hữu ích dành cho các bạn học sinh phổ thông. Chúc các bạn ôn tập hiệu quả.

LIKE NẾU BẠN THÍCH BỘ SƯU TẬP
Chuyên đề phương trình đường thẳng lớp 10 cơ bản

Chuyên đề phương trình đường thẳng lớp 10 cơ bản
Tóm tắt nội dung

Dưới đây là đoạn trích Chuyên đề phương trình đường thẳng lớp 10 cơ bản được trích từ tài liệu cùng tên trong BST:
 

I. LÝ THUYẾT
1. Phương rình tham số.

* Phương trình tham số của đường thẳng đi qua điểm M0(x0 ; y0), có vec tơ chỉ phương là
* Phương trình đường thẳng đi qua M0(x0 ; y0) và có hệ số góc k là: y – y0 = k(x – x0).
2. Phương trình tổng quát.
* Phương trình của đường thẳng đi qua điểm M0(x0 ; y0) và có vec tơ pháp tuyến là:
a(x – x0) + b(y – y0) = 0 ( a2 + b2
* Phương trình ax + by + c = 0 với a2 + b2 là phương trình tổng quát của đường thẳng nhận làm VTPT; ( b; -a ) làm vectơ chỉ phương
* Đường thẳng cắt Ox và Oy lần lượt tại A(a ; 0) và B(0 ; b) có phương trình theo đoạn chắn là
* Cho (d) : ax+by+c=0 Nếu // d thì phương trình là ax+by+m=0 (m khác c)
Nếu vuông góc d thì phươnh trình là : bx-ay+m=0
3. Vị trí tương đối của hai đường thẳng.
Cho hai đường thẳng
Để xét vị trí tương đối của hai đường thẳng ta xét số nghiệm của hệ phương trình
Chú ý
4. Góc giữa hai đường thẳng.
Góc giữa hai đường thẳng có VTPT được tính theo công thức
5. Khoảnh cách từ một điểm đến một đường thẳng.
Khoảng cách từ một điểm M0(x0 ; y0) đến đường thẳng : ax + by + c = 0 cho bởi công thức:
d(M0, ) 


II. BÀI TẬP ÁP DỤNG
1) Cho tam giác ABC với A(-1;2);B(2;-4);C(1;0).Tìm phương trình các đường thẳng chứa đường cao tam giác ABC
2) Viết phương trình các trung trục các cạnh tam giác ABC biết trung điểm 3 cạnh là M(-1;1) ; N(1;9) và P(9;1)
3) Cho A(-1;3) và d: x-2y +2=0.Dựng hình vuông ABCD có B và C thuộc d, C có tọa độ là số dương
a) Tìm tọa dộ A,B,C,D
b) Tìm chu vi và diện tích hình vuông ABCD
4) Cho d1: 2x-y-2=0 và d2:x+y+3=0 ; M(3;0)
a) Tìm giao điểm d1 và d2
b) Tìm phương trình đường thẳng d qua M cắt d1 và d2 tại A và B sao cho M là trung điểm đoạn AB
5) a) Viết phương trình tổng quát đường thẳng d: t
b)Viết phương trình tham số đường thẳng d: 3x-y +2 = 0
6)Xét vị trí tương đối cặp đường thẳng sau : t và d2:
7)Cho d1 và d2:
a) Tìm giao điểm của d1 và d2 gọi là M
b) Tìm phươn trình tổng quát đường thẳng d đi qua M và vuông góc d1
8) Lập phương trình sau đây M( 1;1) ; d : 3x +2y-1 = 0
a) đường thẳng di qua A( -1;2) song song đường thẳng d
b) đường thẳng đi qua M vuông góc d
c) đường thẳng đi qua M và có hệ số góc k = 3
d) đường thẳng đi qua M và A
9) Cho d và M (3;1) a) Tìm A thuộc d sao cho AM = 3 b) Tìm B thuộc d sao cho MB đạt giá trị nhỏ nhất
10) Cho d có 1 cạnh có trung điểm M( -1;1) ; 2 cạnh kia nằm trên các đường thẳng : 2x + 6y+3 = 0 và Tìm phương trình cạnh thứ 3 của tam giác
11) Cho tam giác ABC có pt BC : Pt đường trung tuyến BM và CN có pt : 3x + y – 7 = 0 và x + y – 5 =0 viết pt các cạnh AB và AC
12) Cho A ( -1; 2 ) ; B(3;1) và d : . Tìm C thuộc d sao cho ABC cân
13) Cho A( -1;2) và d : Tìm d’ (A;d) . Tìm diện tích hình tròn tâm A tiếp xúc d
14/ Viết pt đường thẳng : Qua A( -2; 0) và tạo với : d : x + 3y + 3 = 0 một góc 450
15/ Viết pt đường thẳng : Qua B(-1;2) tạo với đường thẳng d: một góc 600
16/ a) Cho A(1;1) ; B(3;6) . Tìm pt đường thẳng đi qua A và cách B một khoảng bằng 2
b) Cho d: 8x – 6y – 5 = 0 tìm pt d’ sao cho d’ song song d và d’ cách d một khoảng bằng 5
17) A(1;1); B(2;0); C(3;4) .Tìm pt đường thẳng qua A cách đều B và C
18) Cho hình vuông có đỉnh A (-4;5) pt một đường chéo là 7x – y + 3 = 0 lập pt các cãnh hình vuông và đường chéo còn lại 

Mời quý thầy cô giáo và các em học sinh xem tiếp nội dung tài liệu này trong bộ sưu tập Chuyên đề phương trình đường thẳng lớp 10 cơ bản. Ngoài ra, có thể tham khảo thêm nhiều tài liệu khác cùng chủ đề hoặc download về làm tài liệu tham khảo bằng cách đăng nhập vào hệ thống eLib.vn của chúng tôi.

Đồng bộ tài khoản