Đề thi đại học môn Toán năm 2013

Chia sẻ: An | Ngày: | 3 đề thi

0
114
lượt xem
4
download
Xem 3 đề thi khác
  Download Vui lòng tải xuống để xem file gốc
   Like fanpage Thư viện Đề thi Kiểm tra để cùng chia sẻ kinh nghiệm làm bài
Đề thi đại học môn Toán năm 2013

Đề thi đại học môn Toán năm 2013
Mô tả bộ sưu tập

Để giúp cho việc ôn tập của bạn đạt kết quả cao, Thư viện eLib xin trân trọng giới thiệu BST Đề thi đại học môn Toán năm 2013. Các đề thi trong BST được chọn lọc và biên soạn cẩn thận, rất tiện cho việc tham khảo. Chúc các bạn đạt được kết quả cao trong kỳ thi sắp tới.

LIKE NẾU BẠN THÍCH BỘ SƯU TẬP
Xem Giáo viên khác thảo luận gì về BST
Đề thi đại học môn Toán năm 2013

Đề thi đại học môn Toán năm 2013
Tóm tắt nội dung

Giúp bạn ôn tập, luyện thi đại học tốt với Đề thi đại học môn Toán năm 2013, đọc và thử luyện tập để chuẩn bị vững kiến thức cho các kỳ thi tuyển sinh sắp tới.

BOÄ GIAÙO DUÏC VAØ ÑAØO TAÏO ÑEÀ THI TUYEÅN SINH ÑAÏI HOÏC NAÊM 2013
−−−−−
− − − −− Moân: TOAÙN; Khoái A vaø khoái A1
ÑEÀ CHÍNH THÖÙC Thôøi gian laøm baøi: 180 phuùt, khoâng keå thôøi gian phaùt ñeà
−−−−−−−−−−
−−−−−−−−−

I. PHAÀN CHUNG CHO TAÁT CAÛ THÍ SINH (7,0 ñieåm)
Caâu 1 (2,0 ñieåm). Cho haøm soá y = −x3 + 3x2 + 3mx − 1 (1), vôùi m laø tham soá thöïc.
a) Khaûo saùt söï bieán thieân vaø veõ ñoà thò cuûa haøm soá (1) khi m = 0.
b) Tìm m ñeå haøm soá (1) nghòch bieán treân khoaûng (0; + ∞).
√ π
Caâu 2 (1,0 ñieåm). Giaûi phöông trình 1 + tan x = 2 2 sin x + .
4
√ √
x + 1 + 4 x − 1 − y4 + 2 = y
Caâu 3 (1,0 ñieåm). Giaûi heä phöông trình (x, y ∈ R).
x2 + 2x(y − 1) + y 2 − 6y + 1 = 0
2
x2 − 1
Caâu 4 (1,0 ñieåm). Tính tích phaân I= ln x dx.
x2
1

Caâu 5 (1,0 ñieåm). Cho hình choùp S.ABC coù ñaùy laø tam giaùc vuoâng taïi A, ABC = 30◦ , SBC laø
tam giaùc ñeàu caïnh a vaø maët beân SBC vuoâng goùc vôùi ñaùy. Tính theo a theå tích cuûa khoái choùp
S.ABC vaø khoaûng caùch töø ñieåm C ñeán maët phaúng (SAB).
Caâu 6 (1,0 ñieåm). Cho caùc soá thöïc döông a, b, c thoûa maõ√ ñieàu kieän (a + c)(b + c) = 4c2 . Tìm giaù trò
n
3 3
32a 32b a 2 + b2
nhoû nhaát cuûa bieåu thöùc P = + − .
(b + 3c)3 (a + 3c)3 c
II. PHAÀN RIEÂNG (3,0 ñieåm): Thí sinh chæ ñöôïc laøm moät trong hai phaàn (phaàn A hoaëc phaàn B)
A. Theo chöông trình Chuaån
Caâu 7.a (1,0 ñieåm). Trong maët phaúng vôùi heä toïa ñoä Oxy, cho hình chöõ nhaät ABCD coù ñieåm C thuoäc
ñöôøng thaúng d : 2x + y + 5 = 0 vaø A(−4; 8). Goïi M laø ñieåm ñoái xöùng cuûa B qua C, N laø hình chieáu
vuoâng goùc cuûa B treân ñöôøng thaúng MD. Tìm toïa ñoä caùc ñieåm B vaø C, bieát raèng N(5; −4).
x−6 y+1 z+2
Caâu 8.a (1,0 ñieåm). Trong khoâng gian vôùi heä toïa ñoä Oxyz, cho ñöôøng thaúng ∆ : = =
−3 −2 1
vaø ñieåm A(1; 7; 3). Vieát phöông trình maët phaúng (P ) ñi qua A vaø vuoâng goùc vôùi ∆. Tìm toïa ñoä ñieåm

M thuoäc ∆ sao cho AM = 2 30.
Caâu 9.a (1,0 ñieåm). Goïi S laø taäp hôïp taát caû caùc soá töï nhieân goàm ba chöõ soá phaân bieät ñöôïc choïn töø
caùc chöõ soá 1; 2; 3; 4; 5; 6; 7. Xaùc ñònh soá phaàn töû cuûa S. Choïn ngaãu nhieân moät soá töø S, tính xaùc suaát
ñeå soá ñöôïc choïn laø soá chaün.
B. Theo chöông trình Naâng cao
Caâu 7.b (1,0 ñieåm). Trong √ t phaúng vôùi heä toïa ñoä Oxy, cho ñöôøng thaúng ∆ : x − y = 0. Ñöôøng
maë √
troøn (C) coù baùn kính R = 10 caét ∆ taïi hai ñieåm A vaø B sao cho AB = 4 2. Tieáp tuyeán cuûa (C)
taïi A vaø B caét nhau taïi moät ñieåm thuoäc tia Oy. Vieát phöông trình ñöôøng troøn (C).
Caâu 8.b (1,0 ñieåm). Trong khoâng gian vôùi heä toïa ñoä Oxyz, cho maët phaúng (P ) : 2x + 3y + z − 11 = 0
vaø maët caàu (S) : x2 + y 2 + z 2 − 2x + 4y − 2z − 8 = 0. Chöùng minh (P ) tieáp xuùc vôùi (S). Tìm toïa ñoä
tieáp ñieåm cuûa (P ) vaø (S).

Caâu 9.b (1,0 ñieåm). Cho soá phöùc z = 1 + 3 i. Vieát daïng löôïng giaùc cuûa z. Tìm phaàn thöïc vaø phaàn aûo
cuûa soá phöùc w = (1 + i)z5.
− −−Heát− − −
−−− − −−
Thí sinh khoâng ñöôïc söû duïng taøi lieäu. Caùn boä coi thi khoâng giaûi thích gì theâm.
Hoï vaø teân thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; Soá baùo danh: . . . . . . . . . . . . . . . . . . . . .
Cùng eLib.VN ôn tập và luyện thi đại học môn Toán với bộ Đề thi đại học môn Toán năm 2013. xem thêm nhiều đề thi hay khác tại đây.
Đồng bộ tài khoản