Bộ đề thi học sinh giỏi môn Tin Học lớp 11 cấp Tỉnh TP

Chia sẻ: Nguyễn Thị Lan Phương | Ngày: | 3 đề thi

0
1.527
lượt xem
201
download
Xem 3 đề thi khác
  Download Vui lòng tải xuống để xem file gốc
   Like fanpage Thư viện Đề thi Kiểm tra để cùng chia sẻ kinh nghiệm làm bài
Bộ đề thi học sinh giỏi môn Tin Học lớp 11 cấp Tỉnh TP

Bộ đề thi học sinh giỏi môn Tin Học lớp 11 cấp Tỉnh TP
Mô tả bộ sưu tập

Học đi đôi với hành, vừa học lý thuyết vừa luyện giải bài tập, trả lời các câu hỏi lý thuyết là phương pháp khá hiệu quả đối đối với các bạn học sinh. Đặc biết, cách này được khá nhiều bạn học sinh tham dự các kì thi học sinh giỏi luyện tập. Thư viện eLib xin giới thiệu đến các bạn Bộ đề thi học sinh giỏi môn Tin Học lớp 11 cấp Tỉnh TP. Bộ đề thi này gồm nhiều đề thi của các năm gần đây nhất, bên cạnh luyện kĩ năng, việc giải cụ thể các đề trong bộ sưu tập này các bạn học sinh có thể quen được mức độ đa dạng cấu trúc đề thi học sinh giỏi. Chúc các bạn ôn thi thật hiệu quả!

LIKE NẾU BẠN THÍCH BỘ SƯU TẬP
Xem Giáo viên khác thảo luận gì về BST
Bộ đề thi học sinh giỏi môn Tin Học lớp 11 cấp Tỉnh TP

Bộ đề thi học sinh giỏi môn Tin Học lớp 11 cấp Tỉnh TP
Tóm tắt nội dung

Đề thi HSG Tin học 11 cấp Tỉnh - Đề số 1

Câu 1: (3,0 điểm) Tìm số TIMSO.PAS
Cho số nguyên dương X, khi đảo ngược trật tự các chữ số của X ta sẽ thu được một số nguyên dương Y, Y được gọi là số đảo ngược của X.
Ví dụ: X = 613 thì Y = 316 là số đảo ngược của X.
Số nguyên dương Y được gọi là số nguyên tố nếu nó chỉ có hai ước số là 1 và chính nó, số 1 không phải là số nguyên tố.
Cho hai số nguyên dương P và Q (1 ≤ P ≤ Q ≤ 2109; Q - P ≤ 105).
Yêu cầu: Hãy tìm tất cả các số nguyên dương X nằm thỏa mãn P ≤ X ≤ Q và số đảo ngược của số X là số nguyên tố.
Dữ liệu vào: Cho trong file văn bản TIMSO.INP có cấu trúc như sau:
- Dòng 1: Ghi hai số nguyên dương P Q, hai số được ghi cách nhau ít nhất một dấu cách.
Dữ liệu ra: Ghi ra file văn bản TIMSO.OUT trên nhiều dòng, mỗi dòng ghi một số nguyên X tìm dược.

Câu 2: (3,5 điểm) Tính tổng TONG.PAS
Cho hai số nguyên dương M và N, M có p chữ số và N có q chữ số.
Yêu cầu: Tính tổng của hai số M và N.
Dữ liệu vào: Cho trong file văn bản TONG.INP có cấu trúc như sau:
- Dòng 1: Ghi số nguyên dương p là số lượng chữ số của M (1 ≤ p ≤ 30000).
- Dòng 2: Ghi p chữ số của M theo thứ tự từ trái sang phải, các chữ số được ghi cách nhau ít nhất một dấu cách.
- Dòng 3: Ghi số nguyên dương q là số lượng chữ số của N (1 ≤ q ≤ 30000).
- Dòng 4: Ghi q chữ số của N theo thứ tự từ trái sang phải, các chữ số được ghi cách nhau ít nhất một dấu cách.
Dữ liệu ra: Ghi ra file văn bản TONG.OUT theo cấu trúc như sau:
- Dòng 1: Ghi số nguyên dương k là số lượng chữ số của tổng tìm được.
- Dòng 2: Ghi k chữ số của tổng tìm được theo thứ tự từ trái sang phải, các chữ số được ghi cách nhau ít nhất một dấu cách.

Câu 3: (3,5 điểm) Dãy con chung dài nhất DAYCON.PAS
Cho dãy số nguyên A gồm N phần tử a1, a2, ..., aN và dãy số nguyên B gồm M phần tử b1, b2, ..., bM. Các phần tử trong một dãy số có giá trị khác nhau từng đôi một.
(1 ≤ ai, bj ≤ 2109; 1 ≤ N ≤ 100; 1 ≤ i ≤ N; 1 ≤ M ≤ 100; 1 ≤ j ≤ M).
Dãy C được gọi là dãy con của dãy A nếu dãy C nhận được từ dãy A bằng cách xóa đi một số phần tử và giữ nguyên thứ tự của các phần tử còn lại.
Nếu dãy C là dãy con của dãy A và cũng là dãy con của dãy B thì dãy C được gọi là dãy con chung của hai dãy A và B.
Yêu cầu: Hãy tìm dãy C là dãy con chung của hai dãy A và B sao cho số lượng phần tử của dãy C là lớn nhất.
Dữ liệu vào: Cho trong file văn bản DAYCON.INP có cấu trúc như sau:
- Dòng 1: Ghi số nguyên dương N là số lượng phần tử của dãy A.
- Dòng 2: Ghi N số nguyên là giá trị của các phần tử trong dãy A, các số được ghi cách nhau ít nhất một dấu cách.
- Dòng 3: Ghi số nguyên dương M là số lượng phần tử của dãy B.
- Dòng 4: Ghi M số nguyên là giá trị của các phần tử trong dãy B, các số được ghi cách nhau ít nhất một dấu cách.
Dữ liệu ra: Ghi ra file văn bản DAYCON.OUT theo cấu trúc như sau:
 

Đồng bộ tài khoản