Giải bài tập 1,2,3,4,5,6 trang 74 sách giáo khoa Giải tích 11

Chia sẻ: Lê Hải | Ngày: | 1

0
20
lượt xem
0
download
  Download Vui lòng tải xuống để xem file gốc
Giải bài tập 1,2,3,4,5,6 trang 74 sách giáo khoa Giải tích 11

Mô tả BST Giải bài tập SGK Giải tích 11: Xác suất và biến cố

Với mong muốn giúp các em học sinh dễ dàng và thuận tiện hơn trong việc hoàn thành các bài tập trong SGK, thư viện eLib xin gửi tới các em tài liệu giải chi tiết các bài tập về Xác suất và biến cố. Các tài liệu được trình bày rõ ràng, khoa học, dễ hiểu. Mời các em tham khảo.

LIKE NẾU BẠN THÍCH BỘ SƯU TẬP

Tóm tắt Giải bài tập 1,2,3,4,5,6 trang 74 sách giáo khoa Giải tích 11

A. Tóm tắt Lý thuyết Xác suất và biến cố Giải tích 11

1. Quan niệm chung về xác suất:

Xác suất của biến cố A là số đo khả năng xảy ra của biến cố A.

2. Định nghĩa cổ điển của xác suất:

Định nghĩa:

Giả sử A là biến cố liên quan đến phép thử T và phép thử T có một số hữu hạn kết quả có thể có, đồng khả năng. Khi đó ta gọi tỉ số  là xác suất của biến cố A,

kí hiệu là P(A) = .

Trong đó, n(A) là số phần tử của tập hợp A, cũng chính là số các kết quả có thể có của phép thử T thuận lợi cho biến cố A; còn n(Ω) là số phần tử của không gian mẫu Ω, cũng chính là số các kết quả có thể có của phép thử T.

Chú ý:

Để vận dụng được định nghĩa cổ điển của xác suất, phải có hai điều kiện sau đây:

- Số các kết quả có thể có của phép thử là hữu hạn;

- Các kết quả có thể có của phép thử là đồng khả năng.

3. Các tính chất cơ bản của xác suất:

3.1 Định lí:

a) P(Φ) = 0; P(Ω) = 1.

b) 0 ≤ P(A) ≤ 1, với mọi biến cố A.

c) Nếu A và B xung khắc với nhau, thì ta có

P(A ∪ B) = P(A) + P(B) (công thức cộng xác suất).

3.2 Hệ quả:

Với mọi biến cố A, ta luôn luôn có: P() = 1 - P(A).

4. Hai biến cố độc lập:

Định nghĩa:

Hai biến cố (liên quan đến cùng một phép thử) là độc lập với nhau khi và chỉ khi việc xảy ra hay không xảy ra của biến cố này không làm ảnh hưởng đến xác suất xảy ra của biến cố kia (nói cách khác là không làm ảnh hưởng đến khả năng xảy ra của biến cố kia).

Định lí:

Nếu A, B là hai biến cố (liên quan đến cùng một phép thử) sao cho P(A) > 0,

P(B) > 0 thì ta có:

a) A và B là hai biến cố độc lập với nhau khi và chỉ khi:

P(A . B) = P(A) . P(B).

Chú ý: Kết quả vừa nêu chỉ đúng trong trường hợp khảo sát tính độc lập chỉ của 2 biến cố.

b) Nếu A và B độc lập với nhau thì các cặp biến cố sau đây cũng độc lập với nhau:

A và  và B,  và .


B. Bài tập về Xác suất và biến cố Giải tích 11

Bài 1 trang 74 SGK Giải tích 11

Gieo ngẫu nhiên một con súc sắc cân đối và đồng chất hai lần.

a) Hãy mô tả không gian mẫu.

b) Xác định các biến cố sau:

A: “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10”;

B: “Mặt % chấm xuất hiện ít nhất một lần”.

c) Tính P(A), P(B).

Hướng dẫn giải bài 1 trang 74 SGK Giải tích 11

Phép thử T được xét là “Gieo một con súc sắc cân đối và đồng chất hai lần”.

a) Ω = {(i, j) | i, j = 1, 2, 3, 4, 5, 6}.

Số phần tử của không gian mẫu là n(Ω) = 36.

Do tính đối xứng của con súc sắc và tính độc lập của mỗi lần gieo suy ra các kết quả có thể có của phép thử T là đồng khả năng.

b) A = {(6, 4), (4, 6), (5, 5), (6, 5), (5, 6), (6, 6)},

B = {(1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (6, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 6)}.

c) P(A) = 6/36= 1/36; P(B) =11/36.


Bài 2 trang 74 SGK Giải tích 11

Có bốn tấm bìa được đánh số từ 1 đến 4. Rút ngẫu nhiên ba tấm.

a) Hãy mô tả không gian mẫu.

b) Xác định các biến cố sau:

A: “Tổng các số trên ba tấm bìa bằng 8”;

B: “Các số trên ba tấm bìa là ba số tự nhiên liên tiếp”.

c) Tính P(A), P(B).

Hướng dẫn giải bài 2 trang 74 SGK Giải tích 11

Phép thử T được xét là: “Từ bốn tấm bìa đã cho, rút ngẫu nhiên ba tâm”.

a) Đồng nhất số i với tấm bìa được đánh số i, i =¯1,6, ta có: mỗi một kết quả có thể có của phép thử T là một tổ hợp chập 3 của 4 số 1, 2, 3, 4. Do đó không gian mẫu là:

Ω = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}.

Số phần tử của không gian mẫu là n(Ω) = C34 = 4.

Vì lấy ngẫu nhiên, nên các kết quả cso thể có của phép thử T là đồng khả năng.

b) A = {(1, 3, 4)}; B = {(1, 2, 3), (2, 3, 4)}

c) P(A) =1/4; P(B) =2/4 =1/2


Bài 3 trang 74 SGK Giải tích 11

Một người chọn ngẫu nhiên hai chiếc giày từ bốn đôi giày cỡ khác nhau.

Tính xác suất để hai chiếc chọn được tạo thành một đôi.

Hướng dẫn giải bài 3 trang 74 SGK Giải tích 11

Phép thử T được xét là: “Lấy ngẫu nhiên 2 chiếc giày từ 4 đôi giày có cỡ khác nhau”.

Mỗi một kết quả có thể là một tổ hợp chập 2 của 8 chiếc giày. Do đó số các kết quả có thể có thể có của phép thử T là n(Ω) = C28 = 8!/(2!6!)= 28.

Vì lấy ngẫu nhiên, nên các kết quả có thể có của phép thử T là đồng khả năng. Gọi A là biến cố: “Lấy được hai chiếc giày tạo thành một đôi”. Mỗi một kết quả có thể có thuận lợi cho A là một đôi giày trong 4 đôi giày đã cho. Do đó số các kết quả có thể có thuận lợi cho A là n(A) = 4. Suy ra P(A) = 4/28= 1/7.


Bài 4 trang 74 SGK Giải tích 11

Gieo một con súc sắc cân đối và đồng chất. Giả sử con súc sắc xuất hiện mặt b chấm. Xét phương trình x2 + bx + 2 = 0. Tính xác suất sao cho:

a) Phương trình có nghiệm

b) Phương trình vô nghiệm.

c) Phương trình có nghiệm nguyên.

Hướng dẫn giải bài 4 trang 74 SGK Giải tích 11

Không gian mẫu là Ω = {1, 2, 3, 4, 5, 6}. Số kết quả có thế có thể có là 6 (hữu hạn); các kết quả đồng khả năng.

Ta có bảng:

b

2

3

4

5

6

∆ = b2 – 8

-7

-4

1

8

17

28

a) Phương trình x2 + bx + 2 = 0 có nghiệm khi và chỉ khi ∆ = b2 – 8 ≥ 0 (*). Vì vậy nếu A là biến cố: “Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 có nghiệm”

thì A = {3, 4, 5, 6}, n(A) = 4 và

P(A) = 4/6= 2/3.

b) Biến cố B: “Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 vô nghiệm” là biến cố A, do đó theo qui tắc cộng xác suất ta có

P(B) = 1 – P(A) = 1/3.

c) Nếu C là biến cố: “Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 có nghiệm nguyên” thì C = {3}, vì vậy

P(C) = 1/6.


Bài 5 trang 74 SGK Giải tích 11

Từ cỗ bài tứ lơ khơ 52 con, rút ngẫu nhiên cùng một lúc bốn con. Tính xác suất sao cho:

a) Cả bốn con đều là át;

b) Được ít nhất một con át;

c) Được hai con át và hai con K.

Hướng dẫn giải bài 5 trang 74 SGK Giải tích 11

Phép thử T được xét là: “Từ cỗ bài tú lơ khơ 52 con bài, rút ngẫu nhiên 4 con bài”.

Mỗi kết quả có thể có là một tổ hợp chập 4 của 52 con bài. Do đó số các kết quả có thể có của phép thử T là n(Ω) = C452 =52! / (4!48!) = 270725.

Vì rút ngẫu nhiên nên các kết quả có thể có là đồng khả năng.

a) Gọi biến cố A: “Rút được bốn con át”. Ta có, số kết quả có thể có thuận lợi cho A là n(A) = 1. Suy ra P(A) = 1/270725 ≈ 0,0000037.

b) Gọi biến cố B: “Rút được ít nhất một con át”. Ta có ¯B= “Rút được 4 con bài đều không là át”. Mỗi kết quả có thể thuận lợi cho ¯B là một tổ hợp chập 4 của 48 con bài không phải là át. Suy ra số các kết quả có thể có thuận lợi cho ¯B là C448 = 48! / (4!44!)= 194580. Suy ra P(¯B) = 194580/270725≈ 0,7187.

Qua trên ta có P(B) = 1 – P(¯B) = 1- 0,7187 ≈ 0,2813.

c) Gọi C là biến cố: “Rút được hai con át và hai con K”.

Mỗi kết quả có thể có thuận lợi cho C là một tổ hợp gồm 2 con át và 2 con K. Vận dụng quy tắc nhân tính được số các kết quả có thể có thuận lợi cho C là

n(C) = C24 C24 = 6 . 6 = 36.

Suy ra P(C) =36/270725≈ 0,000133.


Bài 6 trang 74 SGK Giải tích 11

Hai bạn nam và hai bạn nữ được xếp ngồi ngẫu nhiên vào bốn ghế xếp thành hai dãy đối diện nhau. Tính xác suất sao cho:

a) Nam, nữ ngồi đối diện nhau;

b) Nữ ngồi đối diện nhau.

Hướng dẫn giải bài 6 trang 74 SGK Giải tích 11

a) Có 6 cách sắp xếp 2 nam, 2 nữ (Không phân biệt hai nam với nhau, hai nữ với nhau). Có 4 cách sắp xếp nam nữ ngồi đối diện với nhau. Xác suất để nam, nữ ngồi đối diện nhau là:
P(A) = 4/6 = 2/3

b) Xã suất để nữ ngồi đối diện nhau (hai nam cũng đối diện nhau) là:
P(B) = 1 – P(A) = 1-2/3 = 1/3

Các em có thể xem nội dung tài liệu trực tuyến trên website hoặc đăng kí tài khoản trên elib.vn sau đó đăng nhập để xem đầy đủ hơn. Ngoài ra, các em có thể xem các bài tập dưới đây:

>> Bài trước: Giải bài tập 1,2,3,4,5,6,7 trang 63,64 sách giáo khoa Giải tích lớp 11

>> Bài tiếp theo: Giải bài tập ôn tập chương 2 sách giáo khoa Giải tích 11

 
Đồng bộ tài khoản