Giải bài tập 1,2,3 trang 82 sách giáo khoa Giải tích 11

Chia sẻ: Mai Phượng | Ngày: | 1

0
27
lượt xem
0
download
  Download Vui lòng tải xuống để xem file gốc
Giải bài tập 1,2,3 trang 82 sách giáo khoa Giải tích 11

Mô tả BST Giải bài tập SGK Giải tích 11: Phương pháp quy nạp toán học

Với các tài liệu được chọn lọc và trình bày rõ ràng, hướng dẫn giải chi tiết Phương pháp quy nạp toán học chia sẻ đến các em định hướng cách giải bài tập giúp các em nhớ và củng cố lại các kiến thức trọng tâm của bài học. Mời các em tham khảo tài liệu để hoàn thiện bài tập của mình dễ dàng hơn và biết cách vận dụng vào các bài tập liên quan.

LIKE NẾU BẠN THÍCH BỘ SƯU TẬP

Tóm tắt Giải bài tập 1,2,3 trang 82 sách giáo khoa Giải tích 11

A. Tóm tắt lý thuyết Phương pháp quy nạp toán học Giải tích 11

1. Để chứng minh một mệnh đề P(n) là đúng với mọi n ∈ N*, ta thường dùng phương pháp quy nạp toán học, được tiến hành theo hai bước như sau:

Bước 1 (bước cơ sở): Kiểm tra mệnh đề P(n) đúng với n = 1.

Bước 2 ( bước quy nạp): Giả thiết mệnh đề P(n) đúng với một số tự nhiên bất kì n = k, (k ≥ 1) (ta gọi là giả thiết quy nạp) và chứng minh rằng nó cũng đúng với n = k + 1.

Khi đó, theo nguyên lí quy nạp toán học, ta kết luận mệnh đề P(n) đùng với mọi n ∈ N*

2. Trong trường hợp phải chứng minh một mệnh đề P(n) lf đúng vơi mọi số tự nhiên n ≥ p (p là số tự nhiên) thì:

– Ở bước 1, ta kiểm tra mệnh đề P(n) đúng với n = p.

Ở bước 2, ta giả thiết mệnh đề P(n) đúng với một số tự nhiên bất kì n = k, (k ≥ p) và chứng minh rằng nó cũng đúng với n = k + 1.

3. Phép thử với một số hữu hạn số tự nhiên tuy không phải là chứng minh nhưng cho phép ta dự đoán được kết quả. Kết quả này chỉ là giá thuyết và để chứng minh ta có thể dùng phương pháp quy nạp toán học.

Một số bài toán thường gặp

– Chứng minh các mệnh đề toán học liên quan đến lập luận lôgic.

– Chứng minh các đẳng thức, bất đẳng thức.

– Dự đoán kết quả và chứng minh.


B. Bài tập về Phương pháp quy nạp toán học Giải tích 11

Bài 1 trang 82 SGK Giải tích 11

Chứng minh rằng với n ∈ N*, ta có đẳng thức:

Hướng dẫn giải bài 1 trang 82 SGK Giải tích 11

a) Với n = 1, vế trái chỉ có một số hạng là 2, vế phải bằng
(3+1) / 2 = 2

Vậy VT = VP hệ thức a) đúng với n = 1.

Đặt vế trái bằng Sn.

Giả sử đẳng thức a) đúng với n = k ≥ 1, tức là 

Ta phải chứng minh rằng a) cũng đúng với n = k + 1, nghĩa là phải chứng minh

Thật vậy, từ giả thiết quy nạp, ta có: 

(điều phải chứng minh)

Vậy theo nguyên lí quy nạp toán học, hệ thức a) đúng với mọi n ∈ N*

b) Với n = 1, vế trái bằng 1/2, vế phải bằng 1/2, do đó hệ thức đúng.

Đặt vế trái bằng Sn.

Giả sử hệ thức b) đúng với n = k ≥ 1, tức là


Ta phải chứng minh Thật vậy, từ giả thiết quy nạp, ta có:

 (điều phải chứng minh)

Vậy theo nguyên lí quy nạp toán học, hệ thức b) đúng với mọi n ∈ N*

c) Với n = 1, vế trái bằng 1, vế phải bằng 1(1+1)(2+1) / 6 = 1 nên hệ thức c) đúng với n = 1.

Đặt vế trái bằng Sn.

Giả sử hệ thức c) đúng với n = k ≥ 1, tức là 

Ta phải chứng minh Thật vậy, từ giả thiết quy nạp ta có:

(đpcm)

Vậy theo nguyên lí quy nạp toán học, hệ thức c) đúng với mọi n ∈ N*


Bài 2 trang 82 SGK Giải tích 11

Chứng minh rằng với n ε N* ta luôn có:

a) n3 + 3n2 + 5n chia hết cho 3;

b) 4n + 15n – 1 chia hết cho 9;

c) n+ 11n chia hết cho 6.

Hướng dẫn giải bài 2 trang 82 SGK Giải tích 11

a) Đặt Sn = n+ 3n2 + 5n

Với n = 1 thì S1 = 9 chia hết cho 3

Giả sử với n = k ≥ 1, ta có Sk = (k3 + 3k2 + 5k) ⋮ 3

Ta phải chứng minh rằng Sk+1 ⋮ 3

Thật vậy Sk+1 = (k + 1)3 + 3(k + 1)+ 5(k + 1)

= k3 + 3k2 + 3k + 1 + 3k+ 6k + 3 + 5k + 5

= k3 + 3k+ 5k + 3k2 + 9k + 9 hay Sk+1 = Sk + 3(k2 + 3k + 3)

Theo giả thiết quy nạp thì Sk⋮3, mặt khác 3(k2 + 3k + 3) ⋮3 nên Sk+1 ⋮ 3.

Vậy (n3 + 3n2 + 5n) ⋮ 3 với mọi n ∈ N* .

b) Đặt Sn = 4n + 15n – 1

Với n = 1, S1 = 41 + 15.1 – 1 = 18 nên S1 ⋮9

Giả sử với n = k ≥ 1 thì Sk= 4k + 15k – 1 chia hết cho 9.

Ta phải chứng minh Sk+1 ⋮ 9.

Thật vậy, ta có: Sk+1 = 4k + 1 + 15(k + 1) – 1

= 4(4k + 15k – 1) – 45k + 18 = 4Sk – 9(5k – 2)

Theo giả thiết quy nạp thì Sk ⋮ 9 nên 4S1 ⋮ 9, mặt khác 9(5k – 2) ⋮ 9, nên Sk+1 ⋮ 9

Vậy (4n + 15n – 1) ⋮ 9 với mọi n ∈ N*

c) Đặt Sn = n3 + 11n

Với n = 1, ta có S1 = 13 + 11n = 12 nên S1 ⋮ 6

Giả sử với n = k ≥ 1 ,ta có S= k3 + 11k ⋮ 6

Ta phải chứng minh Sk+1 ⋮ 6

Thật vậy, ta có Sk+1 = (k + 1)+ 11(k + 1) = k3 + 3k + 3k + 1 + 11k + 11

= ( k3 + 11k) + 3(k2 + k + 4) = Sk + 3(k2 + k + 4)

THeo giả thiết quy nạp thì Sk ⋮ 6, mặt khác k2 + k + 4 = k(k + 1) + 1 là số chẵn nên 3(k2 + k + 4) ⋮ 6, do đó Sk+1 ⋮ 6

Vậy n3 + 11n chia hết cho 6 với mọi n ∈ N*


Bài 3 trang 82 SGK Giải tích 11

Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có các bất đẳng thức:

a) 3n > 3n + 1; b) 2n + 1 > 2n + 3

Hướng dẫn giải bài 3 trang 82 SGK Giải tích 11

a) Dễ thấy bất đẳng thức đúng với n = 2

Giả sử bất đẳng thức đúng với n = k ≥ 2, tức là

3k > 3k + 1 (1)

Nhân hai vế của (1) vơi 3, ta được:

3k + 1 > 9k + 3 ⇔ 3k + 1 > 3k + 4 + 6k -1.

Vì 6k – 1 > 0 nên

3k + 1 > 3k + 4 hay 3k + 1 > 3(k + 1) + 1.

tức là bất đẳng thức đúng với n = k + 1.

Vậy 3n > 3n + 1 với mọi số tự nhiên n ≥ 2.

b) Với n = 2 thì vế trái bằng 8, vế phải bằng 7. Vậy bất đẳng thức đúng với n = 2

Giả sử bất đẳng thức đúng với n = k ≥ 2, tức là

2k + 1 > 2k + 3 (2)

Ta phải chứng minh nó cũng đúng với n= k + 1, nghĩa là phải chứng minh

2k + 2 > 2(k + 1) + 3 <=> 2k + 2 > 2k + 5

Nhân hai vế của bất đẳng thức (2) với 2, ta được:

2k + 2 > 4k + 6 ⇔ 2k + 2 > 2k +5 + 2k + 1.

Vì 2k + 1> 0 nên 2k + 2 > 2k + 5

Vậy 2n + 1 > 2n + 3 với mọi số tự nhiên n ≥ 2.

Các em có thể xem nội dung tài liệu trực tuyến trên website hoặc đăng kí tài khoản trên elib.vn sau đó đăng nhập để xem đầy đủ hơn. Ngoài ra, các em có thể xem các bài tập dưới đây:

>> Bài trước: Giải bài tập ôn tập chương 2 sách giáo khoa Giải tích 11

>> Bài tiếp theo:Giải bài tập 1,2,3,4,5 trang 92 sách giáo khoa Giải tích 11

 
Đồng bộ tài khoản