Giải bài tập 24,25,26, 27,28,29, 30,31,32 trang 118,119,120 sách giáo khoa Hình học 7 tập 1

Chia sẻ: Phuong Thuy | Ngày: | 1

0
32
lượt xem
1
download
  Download Vui lòng tải xuống để xem file gốc
Giải bài tập 24,25,26, 27,28,29, 30,31,32 trang 118,119,120 sách giáo khoa Hình học 7 tập 1

Mô tả BST Giải bài tập SGK Hình học 7 tập 1: Trường hợp bằng nhau thứ hai của tam giác

Thư viện eLib xin chia sẻ đến các em học sinh tài liệu hướng dẫn hướng dẫn giải bài tập trang 118,119,120 SGK Hình học 7 tập 1: Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh. Mời các em cùng tham khảo tài liệu nắm bắt phương pháp giải bài tập một cách nhanh chóng và hiệu quả. Hi vọng tài liệu sẽ giúp ích cho quá trình học tập và nâng cao kiến thức của các em. 

LIKE NẾU BẠN THÍCH BỘ SƯU TẬP

Tóm tắt Giải bài tập 24,25,26, 27,28,29, 30,31,32 trang 118,119,120 sách giáo khoa Hình học 7 tập 1

A. Tóm tắt lý thuyết Trường hợp bằng nhau thứ hai của tam giác cạnh – góc – cạnh(c.g.c) SGK Hình học 7 tập 1

1. Tính chất

Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.

∆ABC và ∆A’B’C’ có

AB = A’B’

∠B = ∠B’

BC = B’C’

thì ∆ABC = ∆A’B’C.

2. Áp dụng vào tam giác vuông 

Nếu hai cạnh góc vuông của tam giác này lần lượt bằng hai cạnh góc vuông của tam giác kia thì hai tam giác vuông đó bằng nhau.


B. Bài tập Trường hợp bằng nhau thứ hai của tam giác cạnh – góc – cạnh(c.g.c) SGK Hình học 7 tập 1

Bài 24 trang 118 SGK Hình học 7 tập 1

Vẽ tam giác ABC biết ∠A = 900; AB = AC = 3cm. Sau đó đo các góc ∠B và ∠C.

Hướng dẫn giải bài 24 trang 118 SGK Hình học 7 tập 1 

Cách vẽ:
– Vẽ góc ∠xAy = 900
– Trên tia Ax vẽ đoạn thẳng AB = 3cm,
– Trên tia Ay vẽ đoạn thẳng AC = 3cm,
– Vẽ đoạn BC.
Ta vẽ được đoạn thẳng BC.
Ta đo các góc B và C ta được ∠B = ∠C = 450


Bài 25 trang 118 SGK Hình học 7 tập 1

Trên mỗi hình 82,83,84 sau có các tam giác nào bằng nhau? Vì sao?


Đáp án và hướng dẫn giải bài 25:
Hình 82:
∆ADB và ∆ADE có: AB = AE (gt)
∠A1b= ∠A2 , AD chung.
Nên ∆ADB = ∆ADE(c.g.c)
Hình 83:
∆HGK và ∆IKG có:
HG = IK (gt)
∠G = ∠K (gt)
GK là cạnh chung (gt)
nên ∆HGK = ∆IKG( c.g.c)
Hình 84:
∆PMQ và ∆PMN có: MP cạnh chung
∠M1 = ∠M2
Nhưng MN không bằng MQ. Nên PMQ không bằng PMN.


Bài 26 trang 118 SGK Hình học 7 tập 1

Xét bài toán:
” Cho tam giác ABC, M là trung điểm của BC, Trên tia đối của MA lấy điểm E sao cho ME=MA. Chứng minh rẳng AB//CE”.
Dưới đây là hình vẽ và giả thiết, kết luận của bài toán(h.85)

Hãy sắp xếp lại năm câu sau đây một cách hợp lí để giải bài toán trên:
1) MB = MC(gt)
∠AMB = ∠EMC (Hai góc đối đỉnh)
MA = ME(Giả thiết)
2) Do đó ∆AMB=∆EMC(c.g.c)
3) ∠MAB = ∠MEC
⇒ AB//CE (hai góc bằng nhau ở vị trí sole trong)
4) ∆AMB= ∆EMC⇒ ∠MAB = ∠MEC (Hai góc tương ứng)
5) ∆AMB và ∆EMC có:
Đáp án và hướng dẫn giải bài 26:
Thứ tự sắp xếp hợp lý nhất là: 5,1,2,4,3.


Bài 27 trang 119 SGK Hình học 7 tập 1

Nêu thêm một điều kiện để hai tam giác trong mỗi hình vẽ dưới đây là hai tam giác bằng nhau theo trường hợp cạnh-góc- cạnh.
a) ∆ABC= ∆ADC (h.86);
b) ∆AMB= ∆EMC (h.87)
c) ∆CAB= ∆DBA.(h.88)

Đáp án và hướng dẫn giải bài 27:
a) Bổ sung thêm ∠BAC = ∠DAC để ∆ABC = ∆ADC
Vì ta có AB = AD (gt) ; và AC cạnh chung.
b) Bổ sung thêm MA = ME để ∆AMB= ∆EMC
Vì ta có ∠AMB = ∠EMC (gt); MN = MC (gt)
c) Bổ sung thêm AC = BD để ∆CAB= ∆DBA
Vì ta có 2 tam giác CAB và DBA là 2 tam giác vuông, Cạnh AB chung.


Bài 28 trang 120 SGK Hình học 7 tập 1

Trên hình 89 có bao nhiêu tam giác bằng nhau.

Đáp án và hướng dẫn giải bài 28:
 Tam giác DKE có: ∠D + ∠K + ∠E = 1800 (tổng ba góc trong của tam giác).
hay ∠D + +800 +400 = 1800
⇒∠D = 1800 -1200 = 600
Xét ∆ ABC và ∆KDE có:
AB = KD(gt)
∠B = ∠D ( cùng = 600 )
và BE = ED (gt)
Do đó ∆ABC= ∆KDE (c.g.c)
 Tam giác MNP không có góc xem giữa hai cạnh tam giác KDE ha ABC nên không bằng hai tam giác còn lại .


Bài 29 trang 120 SGK Hình học 7 tập 1

Cho góc xAy. Lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh rằng ∆ABC = ∆ADE.
Đáp án và hướng dẫn giải bài 29:
AB = AD ( gt)
BE = DC (gt)
=> AB + BE = AD + DC
Hay AE = AC
Xét ΔABC và ΔADE, ta có :
AB = AD ( gt)
∠A chung.
AC = AE (cmt).⇒ ∆ABC = ∆ADE (c.g.c)


Giải bài luyện tập 2: Bài 30,31,32 trang 120 (Toán 7 tập 1)

Bài 30 trang 120 SGK Hình học 7 tập 1

Trên hình 90, các tam giác ABC va A’B’C’ có cạnh chung là BC=3cm. CA= CA’= 2cm, ∠ABC = ∠A’BC nhưng hai tam giác đó không bằng nhau.
Tại sao ở đây không thế áp dùng trường hợp c.g.c để kết luận hai tam giác bằng nhau.
Đáp án và hướng dẫn giải bài 30:
Góc ∠ABC không phải là góc xen giữa BC và CA,
Góc A’BC không phải là góc xen giữa hai cạnh BC và CA’.
Do đó không thể sử dụng trường hợp cạnh góc cạnh để kết luận ∆ABC=∆A’B’C’ được.


Bài 31 trang 120 SGK Hình học 7 tập 1

Cho độ dài đoạn thẳng AB, điểm nằm trên đường trung trực của AB, so sánh độ dài các đoạn MA,MB.
Đáp án và hướng dẫn giải bài 31:

Goi H là trung giao điểm của đường trung trực với đoạn AB.
Ta có
AH = BH(gt)
∠AHM = ∠BHM
MH cạnh chung
∆AHM=∆BHM(c .g.c )
Vậy MA= MB (hai cạnh tương ứng).


Bài 32 trang 120 SGK Hình học 7 tập 1

Tìm các tia phân giác trên hình 91. Hãy chứng minh điều đó.

Đáp án và hướng dẫn giải bài 32:
∆AHB và ∆KBH có
AH = KH(gt)
∠AHB = ∠KHB
BH cạnh chung.
nên ∆AHB=∆KBH(c.g.c)
suy ra: ∠ABH = ∠KBH
Vậy BH là tia phân giác của góc B.
Tương tự :
∆AHC và ∆KHC
AH = HK (gt)
∠AHC = ∠KHC
HC cạnh chung
nên ∆AHC = ∆KHC(c.g.c)
Suy ra: ∠ACH = ∠KCH
Vậy CH là tia phân giác của góc C

Để tiện tham khảo, các em vui lòng đăng nhập tài khoản và tải tài liệu về máy. Ngoài ra, các em có thể xem cách giải của:

>> Bài tập trước:  Giải bài tập 15,16,17,18,19,20,21,22,23 trang 114,115,116 sách giáo khoa Hình học 7 tập 1

>> Bài tập tiếp theo: Giải bài tập 33,34,35,36,37,38,39,40,41,42 trang 123,124 sách giáo khoa Hình học 7 tập 1
Đồng bộ tài khoản