Giải bài toán quỹ tích

Chia sẻ: Đinh Duy Tiến | Ngày: | 11 tài liệu

0
308
lượt xem
3
download
Xem 11 tài liệu khác
  Download Vui lòng tải xuống để xem file gốc
Giải bài toán quỹ tích

Giải bài toán quỹ tích
Mô tả bộ sưu tập

BST Giải bài toán quỹ tích tổng hợp các bài tập tham khảo giúp các em học sinh tự luyện tập và có kĩ năng vận dụng khi gặp các bài tập tương tự hoặc có liên quan. Hy vọng, BST này là tài liệu hữu ích dành cho các bạn học sinh phổ thông. Chúc các bạn ôn tập hiệu quả.

LIKE NẾU BẠN THÍCH BỘ SƯU TẬP
Giải bài toán quỹ tích

Giải bài toán quỹ tích
Tóm tắt nội dung

Dưới đây là đoạn tài liệu được trích trong BST Giải bài toán quỹ tích:

Bài toán quỹ tích là bài toán đi tìm tập hợp những điểm thỏa mãn một điều kiện đã cho. Trong hình học, tìm tập hợp điểm tức là mô tả tập hợp đó: Ví dụ quỹ tích là một đường tròn, một đường thẳng, một đoạn thẳng, phần trong của một tam giác, hợp của một số đoạn thẳng …

Bài toán quỹ tích thường được phát biểu dưới dạng: Cho một cấu hình có một số yếu tố cố định và một (hoặc vài) yếu tố thay đổi theo một yêu cầu nào đó (điểm di chuyển trên một đường tròn, đường thẳng quay quanh một điểm …). Yếu tố thay đổi này sẽ dẫn đến sự di động của một số yếu tố điểm khác. Yêu cầu tìm quỹ tích các yếu tố điểm liên quan.

Ví dụ 1. Cho tam giác ABC có BC cố định còn A di động sao cho góc BAC bằng 600. Tìm quỹ tích trọng tâm G của tam giác ABC.

Ví dụ 2. Cho đường tròn (C) tâm O. P là một điểm cố định nằm trong (C) nhưng không trùng với O. Một đường thẳng (d) thay đổi qua P cắt (C) tại A và B. Tìm quỹ tích trung điểm M của đoạn BC khi (d) quay quanh P.

Để giải bài toán quỹ tích, ta thực hiện các bước sau

Phần thuận: Phân tích các yếu tố cố định và thay đổi để chỉ ra tập hợp mà điểm cần tìm quỹ tích phải thuộc vào (thường là đường tròn, đường thẳng). Ta sẽ sử dụng các quỹ tích cơ bản (như cung chứa góc, trung trực, đường tròn Appolonius …) để xác định và chứng minh quỹ tích. Để dự đoán quỹ tích, có thể phải vẽ một số vị trí (trong đó có các vị trí đặc biệt) của cấu hình.

Phần đảo: Sau khi đã làm phần thuận, tức là xác định tập hợp M những điểm mà quỹ tích thuộc vào, ta cần xem xét xem với những điểm P nào thuộc M thì tồn tại một cấu hình có vị trí điểm cần tìm quỹ tích trùng với P. Bước này sẽ loại bỏ những điểm không tương ứng với một cấu hình nào.

Giới hạn: Sau khi thực hiện phần đảo, ta có thể sẽ thấy rằng chỉ một phần của M thuộc về quỹ tích. Bước này mô tả rõ phần đó. Ví dụ mặc dù điểm P thuộc đường tròn (C) nhưng quỹ tích có thể chỉ là một cung của (C).

Kết luận: Dựa trên các phần trên kết luận quỹ tích là tập hợp những điểm như thế nào.
Ta lấy bài toán ở ví dụ 2 để minh họa.

Phần thuận: Nối OM. Vì tam giác OAB cân tại O nên OM vuông góc với AB. Suy ra góc OMP vuông. Như vậy M luôn nhìn đoạn OP cố định dưới một góc vuông. Vậy M luôn thuộc đường tròn đường kính OP.

Phần đảo: Lấy một điểm M bất kỳ thuộc đường tròn đường kính OP (M khác O). Nối OM. Qua M kẻ đường thẳng (d) vuông góc với OM cắt (C) tại A và B. Do góc OMP = 900 nên (d) đi qua P. Vì tam giác OAB cân tại O và OM vuông góc với AB nên M là trung điểm của AB. Vậy M là một điểm thuộc quỹ tích.

Giới hạn: Theo chứng minh trên thì mọi điểm M trên đường tròn đường kính OP khác O đều thuộc quỹ tích và ngược lại, mọi điểm thuộc quỹ tích đều thuộc đường tròn trên. Cuối cùng, vị trí M trùng O tương ứng với trường hợp (d) đi qua O. Như vậy, quỹ tích là cả đường tròn đường kính OP.

Kết luận: Quỹ tích là đường tròn đường kính OP.

Ghi chú: Nếu P là một điểm nằm ngoài đường tròn thì quỹ tích sẽ chỉ là phần đường tròn đường kính OP nằm bên trong (C). Như vậy phần đảo và phần giới hạn là có ý nghĩa và nói chung không thể bỏ qua.

Mời quý thầy cô giáo và các em học sinh xem tiếp nội dung tài liệu này trong bộ sưu tập Giải bài toán quỹ tích. Ngoài ra, có thể tham khảo thêm nhiều tài liệu khác cùng chủ đề trong bộ sưu tập hoặc download về làm tài liệu tham khảo bằng cách đăng nhập vào hệ thống eLib.vn của chúng tôi.
Đồng bộ tài khoản