SKKN dạy học áp dụng phương pháp hàm số để giải bài toán cực trị

Chia sẻ: Xuan | Ngày: | 1 tài liệu

0
139
lượt xem
11
download
  Download Vui lòng tải xuống để xem file gốc
   Like fanpage Bài giảng Giáo án THPT để cùng chia sẻ kinh nghiệm giảng dạy
SKKN dạy học áp dụng phương pháp hàm số để giải bài toán cực trị

SKKN dạy học áp dụng phương pháp hàm số để giải bài toán cực trị
Mô tả bộ sưu tập

Thư viện Elib xin trân trọng giới thiệu đến bạn đọc bộ sưu tập SKKN dạy học áp dụng phương pháp hàm số để giải bài toán cực trị. Bao gồm các đề tài sáng kiến kinh nghiệm có giá trị được sưu tầm, chọn lọc từ các sáng kiến kinh nghiệm của các thầy cô giáo, các cán bộ quản lý giáo dục có nhiều năm kinh nghiệm trong giảng dạy và quản lý. Mời quý vị tham khảo nhằm nâng cao chất lượng quản lý, giảng dạy trong nhà trường.

LIKE NẾU BẠN THÍCH BỘ SƯU TẬP
Xem Giáo viên khác thảo luận gì về BST
SKKN dạy học áp dụng phương pháp hàm số để giải bài toán cực trị

SKKN dạy học áp dụng phương pháp hàm số để giải bài toán cực trị
Tóm tắt nội dung

Mời quý thầy cô giáo và các cán bộ quản lý tham khảo phần trích dẫn nội dung của đề tài sáng kiến kinh nghiệm đầu tiên được lấy ra từ bộ sưu tập SKKN dạy học áp dụng phương pháp hàm số để giải bài toán cực trị dưới đây:

I. ĐẶT VẤN ĐỀ
Trong chương trình toán THPT nói chung và lớp 12 nói riêng, học sinh đã được trang bị kiến thức về hàm số, tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số, tuy nhiên kỹ năng áp dụng phương pháp này vào giải quyết các bài toán tìm cực trị của một biểu thức có nhiều biến số, hoặc chứng minh một bất đẳng thức của đa số học sinh còn nhiều hạn chế. Nguyên nhân là bài toán chứng minh bất đẳng thức, tìm cực trị là một dạng toán khó mà thời lượng trong chương trình lại còn ít. Kiến thức dàn trải suốt cả ba năm học THPT gây khó khăn cho học sinh trong việc xâu chuỗi, hệ thống hoá kiền thức để hình thành phương pháp cho bản thân. Thông thường , khi gặp bài toán trên học sinh thường hoang mang, không biết lựa chọn phương pháp phù hợp. Vì vậy, việc làm phong phú thêm các phương pháp giải dạng toán trên là một việc làm cần thiết, góp phần rèn luyện tư duy, kỹ năng và thay đổi thái độ của học sinh khi tiếp cận dạng toán trên, góp phần nâng cao chất lượng giáo dục môn Toán THPT.
Xuất phát từ những suy nghĩ trên, tôi chọn viết sáng kiến kinh nghiệm: “Dạy học áp dụng phương pháp hàm số để giải bài toán cực trị”. Đó là những kinh nghiệm của bản thân được đúc rút trong quá trình giảng dạy môn Toán ở các lớp thuộc Ban Khoa học tự nhiên.

II. GIẢI QUYẾT VẤN ĐỀ
1. Cơ sở lý luận của vấn đề:

1.1. GTLN, GTNN của hàm số.
- Định nghĩa: Cho hàm số y=f(x) xác định trên miền D
- Định lý: Nếu hàm số liên tục trên đoạn thì luôn tìm được GTNN, GTLN của hàm số trên .
1.2. Sử dụng khảo sát hàm số tìm GTLN,GTNN của hàm số
Bài toán: Tìm GTLN, GTNN ( nếu có ) của hàm số y=f(x) với
Phương pháp:
Quy tắc 1:Trường hợp tổng quát ( Khi D không là một đoạn)Tiến hành theo các bước
+ Tính đạo hàm của hàm số
+ Lập bảng biến thiên của hàm số trên tập D.
+ Căn cứ vào bảng biền thiên để kết luận về GTLN,GTNN
Quy tắc 2: Trường hợp đặc biệt: , tiến hành theo các bước:
+Tính đạo hàm của hàm số,
+ Tìm các điểm tới hạn của hàm số thuộc ( là các điểm thuộc TXĐ mà tại đó, đạo hàm triệt tiêu hoặc không xác định)
+ Tính GT của hàm số tại các điểm tới hạn và tại các điểm a,b.
+ So sánh các GT tìm được để kết luận.
1.3. Các bất đẳng thức bổ trợ cho phương pháp:
+ Bất đẳng thức Cô-si: Với a1;…an là các số thực không âm, ta có; đẳmg thức khi
+ Bất đẳng thức Bunhiacôpxki:
Với hai bộ số thực và , ta có
Đẳng thức có khi hai bộ số tương ứng tỷ lệ.
+ Tập giá trị của hàm số: Cho hàm số với tập xác định D, tập giá trị của hàm số là :
Hay : T={ : phương trình f(x)=y ẩn x có nghiệm.
2. Thực trạng của vấn đề:
Khi giải quyết bài toán tìm cực trị của một biểu thức bằng phương pháp sử dụng sự biến thiên của hàm số, thực chất là đi xác định tập giá trị của biểu thức, của hàm số với điều kiện cho trước. Căn cứ vào đặc trưng của biểu thức ( Tính đối xứng của các biến, điều kiện của các biến có tính đẳng cấp với các biến…) để tiến hành đổi biến, học sinh thường gặp các khó khăn và hay mắc các sai lầm sau 

Để xem đầy đủ đề tài sáng kiến kinh nghiệm này, quý thầy cô và các cán bộ quản lý vui lòng download bộ sưu tập SKKN dạy học áp dụng phương pháp hàm số để giải bài toán cực trị và xem thêm các đề tài khác. Chúc quý thầy cô giáo và các cán bộ quản lý giáo dục có thêm những kinh nghiệm quý báu có ích cho công việc của mình.
Đồng bộ tài khoản