Toán 12 Chương 2 Bài 2: Mặt cầu

eLib xin giới thiệu đến các em học sinh lớp 12 bài Mặt cầu. Bài giảng này bao gồm chi tiết các dạng Toán, bên cạnh đó sử dụng các bài tập minh hoạ kèm theo lời giải chi tiết cho các em tham khảo, rèn luyện kỹ năng giải Toán 12. Mời các em học sinh cùng tham khảo.

Toán 12 Chương 2 Bài 2: Mặt cầu

1. Tóm tắt lý thuyết 

1.1. Định nghĩa

Tập hợp các điểm trong không gian cách điểm O cố định một khoảng không đổi r (r>0) được gọi là một mặt cầu tâm O bán kính r.

Kí hiệu: \(S\left( {O;r} \right) = \left\{ {M|OM = r} \right\}.\)

Đoạn thẳng nối hai điểm nằm trên mặt cầu gọi là dây cung của mặt cầu.

Dây cung đi qua tâm gọi là đường kính.

Cho mặt cầu S(O;r) và điểm A trong không gian.

Nếu OA = r thì điểm A nằm trên mặt cầu.

Nếu OA < r thì điểm A nằm trong mặt cầu.

Nếu OA > r thì điểm A nằm ngoài mặt cầu.

Khối cầu: Tập hợp các điểm thuộc mặt cầu S(O;r) cùng với các điểm nằm bên trong mặt cầu đó được gọi là khối cầu hoặc hình cầu tâm O bán kính R.

1.2. Tính chất

Nếu điểm A nằm ngoài mặt cầu S(O;r) thì:

Qua A có vô số tiếp tuyến với mặt cầu.

Độ dài các đoạn thẳng nối A với các tiếp điểm đều bằng nhau.

Tập hợp các tiếp điểm là một đường tròn nằm trên mặt cầu.

1.3. Giao của mặt cầu với mặt phẳng

Cho mặt cầu S(O;r) tâm O bán kính r và mặt phẳng (P); H là hình chiếu vuông góc của O lên mặt phẳng (P).

Khi đó h=OH là khoảng cách từ O đến mặt phẳng (P). 

Nếu h=r thì (P) tiếp xúc mặt cầu.

Ghi nhớ: Điều kiện cần và đủ để mặt phẳng (P) tiếp xúc với mặt cầu S(O;r) tại điểm H là (P) vuông góc với bán kính OH tại điểm H đó.

Nếu h>r thì (P) không có điểm chung với mặt cầu.

Nếu h < r thì (P) cắt mặt cầu S(O;r) theo giao tuyến là một đường tròn tâm H bán kính \(r' = \sqrt {{r^2} - {h^2}} .\)

1.4. Giao của mặt cầu với đường thẳng

Cho mặt cầu S(O;r) và đường thẳng ∆. Gọi H là chân đường vuông góc hạ từ O lên ∆, đặt h=OH. Ta có:

Nếu h=r thì đường thẳng ∆ tiếp xúc với mặt cầu tại H.

Ghi nhớ: Điều kiện cần và đủ để đường thẳng \(\Delta\) tiếp xúc với mặt cầu S(O;r) tại điểm H là \(\Delta\) vuông góc với bán kính OH tại điểm H đó.

Nếu h < r, \(\Delta\) cắt mặt cầu S(0;r) tại hai điểm M,N, đoạn thẳng MN có độ dài \(MN=2\sqrt{r^2-h^2}.\)

Nếu h>r thì đường thẳng ∆ không cắt mặt cầu.

1.5. Công thức diện tích mặt cầu và thể tích hình cầu

Công thức tính thể tích khối cầu bán kính R: \(V=\frac{4}{3}\pi .R^3\).

Công thức tính diện tích mặt cầu bán kính R: \(S = 4\pi {R^2}.\)

1.6. Mặt cầu ngoại tiếp lăng trụ và hình chóp

a) Mặt cầu ngoại tiếp hình chóp

Hình chóp có một mặt cầu ngoại tiếp khi và chỉ khi đáy của hình chóp là đa giác nội tiếp.

Cách xác định tâm mặt cầu ngoại tiếp hình chóp: nếu hình chóp có mặt cầu ngoại tiếp thì tâm mặt cầu ngoại tiếp hình chóp chính là giao điểm của mặt phẳng trung trực của một cạnh bên và trục dường tròn ngoại tiếp đa giác đáy.

b) Mặt cầu ngoại tiếp lăng trụ

Hình lăng trụ có một mặt cầu ngoại tiếp khi và chỉ khi lăng trụ đó là lăng trụ đứng có đáy là đa giác nội tiếp.

Cách xác định tâm mặt cầu ngoại tiếp lăng trụ: nếu lăng trụ có mặt cầu ngoại tiếp thì tâm đường tròn ngoại tiếp lăng trụ đó chính là trung điểm của đoạn nối tâm 2 đường tròn ngoại tiếp hai đa giác đáy.

2. Bài tập minh hoạ

2.1. Bài tập 1

Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB = 3a, BC = 4a, SA = 12a và vuông góc với mặt đáy. Tính diện tích và thể tích của mặt cầu ngoại tiếp hình chóp S.ABCD.

Hướng dẫn giải

Xét các tam giác SAB, SBC, SDC, SAC đều là những tam giác vuông, và có chung SC là cạnh huyền.

Vậy trung điểm I của SC chính là tâm mặt cầu ngoại tiếp hình chóp S.ABCD.

Xét tam giác ABC vuông tại B ta có: \(AC = \sqrt {A{B^2} + B{C^2}} = 5a\).

Xét tam giác SAC vuông tại A ta có: \(SC = \sqrt {S{A^2} + A{C^2}} = 13a\).

Vậy bán kính mặt cầu ngoại tiếp khối chóp là: \(R=\frac{{13a}}{2}\).

Diện tích mặt cầu là: \(S = 4\pi {R^2}=169\pi a^2.\)

Thể tích khối cầu là: \(V=\frac{4}{3}\pi .R^3=\frac{2197}{6}\pi a^3.\)

2.2. Bài tập 2

Xác định tâm và bán kính mặt cầu ngoại tiếp tứ diện đều cạnh a.

Hướng dẫn giải

Gọi H là tâm của tam giác đều BCD.

Dễ thấy A nằm trên trục của đường tròn ngoại tiếp ∆BCD.

Gọi O là tâm của mặt cầu ngoại tiếp ABCD thì O nằm trên AH.

Đặt OH=x (x>0)

Ta có:

\(BH = \frac{2}{3}BE = \frac{2}{3}a.\sin {60^0} = a.\frac{{\sqrt 3 }}{3}\)

\(AH = \sqrt {A{B^2} - B{H^2}} = \sqrt {{a^2} - \frac{{{a^2}}}{3}} = a\sqrt {\frac{2}{3}}\)

\(OA = AH - x = a\sqrt {\frac{2}{3}} - x\)

\(BO = \sqrt {B{H^2} + H{O^2}} = \sqrt {\frac{{{a^2}}}{3} + {x^2}}\)

Mặt khác: \(OA = OB \Leftrightarrow a\sqrt {\frac{2}{3}} - x = \sqrt {\frac{{{a^2}}}{3} + {x^2}} \Leftrightarrow x = \frac{{a\sqrt 6 }}{{12}}\).

Vậy tâm O của mặt cầu ngoại tiếp nằm trên AH và cách (BCD) một khoảng \(OH=\frac{{a\sqrt 6 }}{{12}}.\)

Bán kính của mặt cầu là \(R=OA=a\sqrt {\frac{2}{3}} - \frac{{a\sqrt 6 }}{{12}} = \frac{{a\sqrt 6 }}{4}.\)

2.3. Bài tập 3

Xác định tâm và bán kính mặt cầu ngoại tiếp tứ diện OABC có OA=a, OB=b,OC=c và OA,OB,OC đôi một vuông góc.

Hướng dẫn giải

Gọi H là trung điểm của AB.

Dễ thấy H là tâm đường tròn ngoại tiếp ∆SAB.

Mặt phẳng trung trực của SC cắt trục đường tròn (SAB) tại O.

Ta có O chính là tâm mặt cầu ngoại tiếp tứ diện SABC.

Do OHSM là hình chữ nhật nên: \(MS=OH=\frac{1}{2}c\).

\(\begin{array}{l} R = SO = \sqrt {S{H^2} + H{O^2}} = \sqrt {{{\frac{{AB}}{4}}^2} + H{O^2}} \\ = \sqrt {{{\frac{{S{A^2} + SB}}{4}}^2} + H{O^2}} = \frac{{\sqrt {{a^2} + {b^2} + {c^2}} }}{2}. \end{array}\)   

2.4. Bài tập 4

Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy là a, góc giữa AB’ với mặt đáy là 450. Tính diện tích mặt cầu ngoại tiếp lăng trụ.

Hướng dẫn giải

\(B'B = AB.\tan {45^0} = a\).

Gọi O, O’ lần lượt là trọng tâm các tam giác đều ABC và A’B’C’.

Tâm mặt cầu ngoại tiếp khối lăng trụ là trung điểm I của OO’.

Do A'B'C' là tam giác đều nên \(O'C'=\frac{a \sqrt3}{3}.\)

\(IO'=\frac{1}{2}BB'=\frac{a}{2}.\)

Suy ra: \(R = IC' = \sqrt {IO{'^2} + O'C{'^2}} = \sqrt {{{\left( {\frac{a}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}} = \frac{{a\sqrt {21} }}{6}\).

Vậy diện tích mặt cầu là: \(S = 4\pi {R^2} = \frac{7}{3}\pi {a^2}\).

3. Luyện tập

3.1. Bài tập tự luận

Câu 1: Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh đều bằng \(a\). Hãy xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp đó.

Câu 2: Hình chóp tam giác S.ABC có SA = SB = SC = a và có chiều cao bằng h. Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp. Tính diện tích của mặt cầu đó.

Câu 3: Tìm tập hợp tâm các mặt cầu luôn luôn chứa một đường tròn cố định cho trước.

Câu 4: Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AA' = a, AB = b, AD = c\).

a) Hãy xác định tâm và bán kính của mặt cầu đi qua 8 đỉnh của hình hộp đó.

b) Tính bán kính của đường tròn là giao tuyến của mặt phẳng \((ABCD)\) với mặt cầu trên.

Câu 5: Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) và có SA = a, AB = b , AC = c . Xác định tâm và bán kính hình cầu ngoại tiếp tứ diện trong các trường hợp sau:

a) \(\widehat {BAC} = {90^0}\)             

b) \(\widehat {BAC} = {60^0}\) và b = c            

c) \(\widehat {BAC} = {120^0}\) và b = c

3.2. Bài tập trắc nghiệm

Câu 1: Có một hộp nhựa hình lập phương người ta bỏ vào hộp đó 1 quả bóng đá. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}},\) trong đó V1 là tổng thế tích của quả bóng đá, V2 là thể tích của chiếc hộp đựng bóng. Biết rằng đường tròn lớn trên quả bóng có thể nội tiếp bốn mặt hình vuông của chiếc hộp.

A.  \(\frac{{{V_1}}}{{{V_2}}} = \frac{\pi }{2}\)

B.  \(\frac{{{V_1}}}{{{V_2}}} = \frac{\pi }{4}\)

C.  \(\frac{{{V_1}}}{{{V_2}}} = \frac{\pi }{6}\)

D. \(\frac{{{V_1}}}{{{V_2}}} = \frac{\pi }{8}\)

Câu 2: Cho hình lập phương có cạnh bằng a và tâm I. Tính diện tích S của mặt cầu tâm I tiếp xúc với các mặt của hình lập phương.

A.  \(S = 4\pi {a^2}\)

B.  \(S = 2\pi {a^2}\)

C.  \(S = 8\pi {a^2}\)

D.  \(S = \pi {a^2}\)

Câu 3: Cho một tam giác vuông cân có các cạnh góc vuông có độ dài m. Tính diện tích S của mặt cầu sinh bởi đường tròn ngoại tiếp tam giác vuông đó khi quay quanh cạnh huyền.

A.  \(S = 8\pi {m^2}\)

B.  \(S = 4\pi {m^2}\)

C.  \(S = 2\pi {m^2}\)

D.  \(S = \frac{2\pi {m^2}}{3}\)

Câu 4: Đường kính của một khối cầu bằng cạnh của một khối lập phương. Gọi V1 là thể tích khối lập phương, V2 là thể tích khối cầu. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\).

A.  \(\frac{4}{3}\pi\)

B. \(\frac{1}{6}\pi\)

C.  \(\frac{6}{\pi }\)

D.  \(\frac{3}{{4\pi }}\)

Câu 5: Một hình hộp chữ nhật nội tiếp mặt cầu có ba kích thước là a, b, c. Tìm bán kính r của mặt cầu bằng?

A.  \(\frac{1}{2}\sqrt {{a^2} + {b^2} + {c^2}}\)

B.  \(\sqrt {{a^2} + {b^2} + {c^2}}\)

C. \(\sqrt {2\left( {{a^2} + {b^2} + {c^2}} \right)}\)

D. \(\frac{{\sqrt {{a^2} + {b^2} + {c^2}} }}{3}\)

Câu 6: Cho hình lập phương có cạnh bằng a và tâm I. Tính diện tích S của mặt cầu tâm I tiếp xúc với các mặt của hình lập phương.

A.  \(S = 4\pi {a^2}\)

B.  \(S = 2\pi {a^2}\)

C.  \(S = 8\pi {a^2}\)

D.  \(S = \pi {a^2}\)

3.3. Trắc nghiệm Online

Các em hãy luyện tập bài trắc nghiệm Mặt cầu Toán 12 sau để nắm rõ thêm kiến thức bài học.

Trắc Nghiệm

4. Kết luận

Qua bài học này học sinh cần nắm được một số ý chính như sau:

  • Nắm được khái niệm mặt cầu, tâm mặt cầu, bán kính mặt cầu, đường kính mặt cầu. Giao của mặt cầu và mặt phẳng, giao của mặt cầu và đường thẳng, tiếp tuyến với mặt cầu, công thức tính diện tích và thể tích của khối cầu.
  • Biết cách tính diện tích mặt cầu và thể tích của khối cầu.
  • Biết chứng minh một số tính chất liên quan đến mặt cầu.
Ngày:03/08/2020 Chia sẻ bởi:Oanh

CÓ THỂ BẠN QUAN TÂM